Основной закон релятивистской динамики. Релятивистская энергия

Основы механики для

Основной закон релятивистской динамики. Релятивистская энергия
Релятивистская механика

Релятивистская механика – это механика, в которую превращается механика Ньютона в случае если тело движется со скоростью, близкой к скорости света. На таких высоких скоростях с вещами начинают происходить ну просто волшебные и совершенно неожиданные вещи, такие как, например, релятивистское сокращение длины или замедление времени.

Но как именно классическая механика становится релятивистской? Обо всем по порядку в нашей новой статье.

Начнем с самого начала…

Принцип относительности Галилея

Принцип относительности Галилея (1564-1642) гласит:

В инерциальных системах отсчета все процессы протекают одинаково, если система неподвижна или движется равномерно и прямолинейно.

В данном случае речь идет исключительно о механических процессах.

Что это значит? Это значит, что если мы, например, будем плыть на равномерно и прямолинейно движущемся пароме через туман, мы не сможем определить, движется паром или покоится.

Иными словами, если провести эксперимент в двух одинаковых замкнутых лабораториях, одна из которых равномерно и прямолинейно движется относительно другой, результат эксперимента будет одинаковым.

Галилео Галилей

Преобразования Галилея

Преобразования Галилея в классической механике – это преобразования координат и скорости при переходе от одной инерциальной системы отсчета к другой.

Не будем приводить здесь всех вычислений и выводов, а просто запишем формулу для преобразования скорости.

Согласно этой формуле скорость тела относительно неподвижной системы отсчета равна векторной сумме скорости тела в движущейся системе отсчета и скорости движущейся системы отсчета относительно неподвижной.

Приведенный нами выше принцип относительности Галилея является частным случаем принципа относительности Эйнштейна.

Принцип относительности Эйнштейна и постулаты СТО

В начале двадцатого века после более чем двухсотлетнего господства классической механики возник вопрос о распространении принципа относительности на немеханические явления.

Причиной возникновения такого вопроса стало закономерное развитие физики, в частности оптики и электродинамики.

Результаты многочисленных экспериментов то подтверждали справедливость формулировки принципа относительности Галилея для всех физических явлений, то в ряде случаев указывали на ошибочность преобразований Галилея.

Эйнштейн – человек, создавший специальную теорию относительности

Например, проверка формулы сложения скоростей показала ее ошибочность при скоростях, близких к скорости света. Более того, опыт Физо в 1881 году показал, что скорость света не зависит от скорости движения источника и наблюдателя, т.е. в любой системе отсчета остается постоянной. Данный результат эксперимента никак не укладывался в рамки классической механики.

Решение этой и других проблем нашел Альберт Эйнштейн. Для того чтобы теория сошлась с практикой, Эйнштейну пришлось отказаться от нескольких, казалось бы, очевидных истин классической механики.

А именно – предположить, что расстояния и промежутки времени в различных системах отсчета не неизменны.

Ниже приведем основные постулаты Специальной Теории Относительности (СТО) Эйнштейна:

Первый постулат: во всех инерциальных системах отсчета все физические явления протекают одинаково.  При переходе от одной системы к другой все законы природы и явления, описывающие их,  инвариантны, то есть никакими опытами нельзя отдать предпочтение одной из систем, ибо они инвариантны.

Второй постулат: скорость света в вакууме одинакова во всех направлениях и не зависит от источника и наблюдателя, т.е. не изменяется при переходе от одной инерциальной системы к другой.

Скорость света – предельная скорость. Никакой сигнал или действие не могут распространяться со скоростью, превышающей скорость света.

Преобразования координат и времени при переходе от неподвижной системы отсчета к системе, движущейся со скоростью света, называются преобразованиями Лоренца. К примеру, пусть одна система покоится, а вторая движется вдоль оси абсцисс.

Здесь

Как видим, время также изменяется наряду с координатами, то есть выступает как бы в роли четвертной координаты. Преобразования Лоренца показывают, что в СТО пространство и время неразделимы в отличие от классической механики.

Помните парадокс двух близнецов, один из которых ждал на земле, а второй летел на космическом корабле с очень большой скоростью? После того как брат-космонавт вернулся на землю, он застал своего брата стариком, хотя сам был практически так же молод, как в момент начала путешествия. Типичный пример того, как изменяется время в зависимости от системы отсчета.
Парадокс близнецов

При скоростях же много меньших скорости света преобразования Лоренца переходят в преобразования Галилея. Даже при скорости современных реактивных самолетов и ракет отклонения от законов классической механики настолько малы, что их практически невозможно измерить.

Релятивистская механика

Механика, учитывающая преобразования Лоренца,  и называется релятивистской.

В рамках релятивистской механики меняются формулировки некоторых физических величин. Например, импульс тела в релятивистской механике в соответствии с преобразованиями Лоренца может быть записан так:

Соответственно, второй закон Ньютона в релятивистской механике будет иметь вид:

А полная релятивистская энергия тела в релятивистской механике равна

Если тело покоится и скорость равна нулю, данная формула преобразуется в знаменитую

Формула энергии покоя тела

Данная формула, которую, кажется, знают все, показывает, что масса является мерой полной энергии тела, а также иллюстрирует принципиальную возможность перехода энергии вещества в энергию излучения.

Дорогие друзья, на этой торжественной ноте мы закончим наш сегодняшний обзор релятивистской механики. Мы рассмотрели принцип относительности Галилея и Эйнштейна, а также некоторые основные формулы релятивистской механики.

Самым стойким и дочитавшим статью до конца напоминаем – в мире нет «нерешабельных» задач и проблем, которые невозможно решить. Паниковать и переживать из-за незаконченной курсовой нет никакого смысла.

Просто вспомните о масштабах Вселенной, вздохните полной грудью и поручите выполнение настоящим профессионалам своего дела – авторам компании Zaochnik.

Законы релятивистской механики

Основной закон релятивистской динамики. Релятивистская энергия

Определение 1

Релятивистская механика — один из важных и обширных разделов физики, который рассматривает механические процессы в виде законов движения тел и частиц при скоростях, сравнимых со скоростью света.

релятивистской механики. Автор24 — интернет-биржа студенческих работ”>

Рисунок 1. Законы релятивистской механики. Автор24 — интернет-биржа студенческих работ

Указанное научное направление тщательно описывает взаимосвязь предметов, движущихся на огромных скоростях, а изучение этого же показателя, который значительно меньше скорости света, занимается классическая (ньютоновская) механика.

Значимые для науки законы релятивистской механики представляют собой обобщение второго закона Ньютона и релятивистскую теорию сохранения энергетического потенциала и импульса, которые являются следствием необычного «смешения» временной координаты и пространственных факторов при преобразованиях Лоренца.

Основной закон релятивистской механики

Рисунок 2. Релятивистский закон сложения скоростей. Автор24 — интернет-биржа студенческих работ

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Первый постулат универсальной теории относительности или принцип инертности Эйнштейна требует обязательного сохранения формы фундаментальных постулатов физики во всех существующих инерциальных системах отсчета.

Основной закон классической динамики Ньютона для материальной точки описывается уравнением, где масса $m$ считается абсолютной и одинаковой во всех инерциальных системах отсчета. При переходе от одной концепции отсчета к другой форма записи закона будет кардинально видоизменяться. Следовательно, он не может стать основой релятивистской динамики.

Эйнштейн продемонстрировал, что форма второго учения Ньютона сохраняется, если под общей массой понимать сам коэффициент, который измеряется только в инерциальной системе отсчета с помощью материальной точки и скорости света в пустоте. Правильная формулировка этой теории формально совпадает с аналогичным законом классической механики: скорость изменения импульса физического тела равна силе, которая действует на точку.

Закон взаимосвязи массы и энергии

Рисунок 3. Закон взаимосвязи массы и энергии. Автор24 — интернет-биржа студенческих работ

В специальной теории относительности сделан важный вывод о взаимосвязи массы и энергии тела в релятивистской механике. Для его понимания необходимо определить кинетическую энергию материальной точки таким же методом, как и в классической физике, то есть как конкретную величину, действие которой равно работе движущейся на точку силы.

Из этого следует, что приращение кинетической энергии материальной среды прямо пропорционально приращению собственной релятивистской массы. Если физический элемент находится в состоянии покоя, то он в любом случае обладает определенной энергией, называемой в физике показателем стабильности.

Выражение и уравнения, которые демонстрируют взаимосвязь энергетического потенциала и массы физического тела, представляют собой математическую запись фундаментального вывода, сделанного Эйнштейном и носящего название данной теории.

В новом понимании полная энергия материального вещества равна произведению релятивистской массы на квадрат скорости света в вакууме.

В итоге, полная энергия тела на сегодняшний день приравнивается сумме кинетической интенсивности и коэффициента покоя этого объекта.

Замечание 1

Заметим, что в полную релятивистскую энергию невозможно ввести потенциальную энергию тела во внешнем силовом поле.

Таким образом, масса физического тела, которая в классической механике представляла собой показатель инертности (во втором законе Ньютона), теперь выполняет роль энергосодержателя исследуемого предмета. Даже покоящаяся материальная точка, согласно гипотезе относительности, обладает энергией.

Преобразования Лоренца

Рисунок 4. Преобразования Лоренца. Автор24 — интернет-биржа студенческих работ

Подобно тому, как классические представления и теории о времени и пространстве количественно формулируются посредством преобразований Галилея для соответствующих координат, новые релятивистские идеи реализуются с помощью формул Лоренца.

Если имеется инерциальная система отсчёта, тогда координаты любой точки, например, точки $B$ , в этом пространстве будут обозначаться через $х, у, z$, а время через $t$.

Другая инерциальная концепция движется с постоянной скоростью относительно первой системы, а оси $y$ и $z$ параллельны конкретным линиям. Это означает что рассмотрение частных и стабильных преобразований предполагает комплексное изучение движущихся в соответствующей системе тел.

Начало отсчета времени необходимо выбирать таким образом, чтобы в момент времени $t$, т точки $O$ и $O*$ полностью совпадали.

Замечание 2

Различие в течение времени в различных системах отсчёта обусловлено наличием предельной скорости распространения их взаимодействий.

Это означает, что в определенных системах одно событие будет предшествовать другому. Сказанное относится только к тем явлениям, между которыми нет причинной связи.

Принцип относительности в релятивистской механике

В релятивистской механике изобретать различные теории для объяснения отрицательных результатов не стоит, ведь это не поможет обнаружить различие между действующими инерциальными системами.

Законом природы в этой области науки выступает полное равноправие всех концепций отсчета в отношении электромагнитных и механических явлений.

Нет никакого существенного различия между состоянием покоя и прямолинейного равномерного движения.

Определение 2

Принцип относительности – основной постулат теории Эйнштейна, где все физические процессы протекают одновременно и одинаково во всех инерциальных системах отсчета.

Но теория относительности в релятивистской механике базируется не только на этом принципе, ведь существует еще и второй постулат: скорость света в пустоте одинакова для существующих в той же среде инерциальных систем отсчета. Она не зависит ни от скорости светового сигнала, ни от скорости самого источника.

Основные следствия, которые вытекают из постулатов теории относительности, заключаются в следующем:

  • относительность расстояний между действующими объектами;
  • относительность промежутков времени;
  • замедления времени в движущихся системах отсчета.

Таким образом, скорость света занимает центральное положение. Более того, как вытекает из закономерностей гипотезы относительности, световая скорость в вакууме считается максимально вероятной скоростью передачи взаимодействия в природе.

Для того чтобы грамотно сформулировать постулаты указанной теории, ученым нужна была большая научная мысль, которая смогла бы противостоять классическим представлениям о времени и пространстве.

Релятивистская динамика

Основной закон релятивистской динамики. Релятивистская энергия

Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: полная энергия, связь массы и энергии, энергия покоя.

В классической динамике мы начали с законов Ньютона, потом перешли к импульсу, а после него — к энергии. Здесь мы ради простоты изложения поступим ровно наоборот: начнём с энергии, затем перейдём к импульсу и закончим релятивистским уравнением движения — модификацией второго закона Ньютона для теории относительности.

Релятивистская энергия

Предположим, что изолированное тело массы покоится в данной системе отсчёта. Одно из самых впечатляющих достижений теории относительности — это знаменитая формула Эйнштейна:

(1)

Здесь — энергия тела, — скорость света в вакууме. Поскольку тело покоится, энергия , вычиляемая по формуле (1), называется энергией покоя.

Формула (1) утверждает, что каждое тело само по себе обладает энергией — просто потому, что оно существует в природе. Образно говоря, природа затратила определённые усилия на то, чтобы «собрать» данное тело из мельчайших частиц вещества, и мерой этих усилий служит энергия покоя тела. Энергия эта весьма велика; так, в одном килограмме вещества заключена энергия

Дж.

Интересно, какое количество топлива нужно сжечь, чтобы выделилось столько энергии? Возьмём, например, дерево. Его удельная теплота сгорания равна Дж/кг, поэтому находим: кг. Это девять миллионов тонн!

Ещё для сравнения: такую энергию единая энергосистема России вырабатывает примерно за десять дней.

Почему столь грандиозная энергия, содержащаяся в теле, до сих пор оставалась нами незамеченной? Почему в нерелятивистских задачах, связанных с сохранением и превращением энергии, мы не учитывали энергию покоя? Скоро мы ответим на этот вопрос.

Поскольку энергия покоя тела прямо пропорциональна его массе, изменение энергии покоя на величину приводит к изменению массы тела на

.

Так, при нагревании тела возрастает его внутренняя энергия, и, стало быть, масса тела увеличивается! В повседневной жизни мы не замечаем этого эффекта ввиду его чрезвычайной малости. Например, для нагревания воды массой кг на (удельная теплоёмкость воды равна ) ей нужно передать количество теплоты:

Дж.

Увеличение массы воды будет равно:

кг.

Столь ничтожное изменение массы невозможно заметить на фоне погрешностей измерительных приборов.

Формула ( 1) даёт энергию покоящегося тела. Что изменится, если тело движется?

Снова рассмотрим неподвижную систему отсчёта и систему , движущуюся относительно со скоростью . Пусть тело массы покоится в системе ; тогда энергия тела в системе есть энергия покоя, вычисляемая по формуле ( 1). Оказывается, при переходе в систему энергия преобразуется так же, как и время — а именно, энергия тела в системе , в которой тело движется со скоростью , равна:

( 2)

Формула ( 2) была также установлена Эйнштейном. Величина — это полная энергия движущегося тела. Поскольку в данной формуле делится на «релятивистский корень», меньший единицы, полная энергия движущегося тела превышает энергию покоя. Полная энергия будет равна энергии покоя только при .

Выражение для полной энергии ( 2) позволяет сделать важные выводы о возможных скоростях движения объектов в природе.

1. Каждое массивное тело обладает определённой энергией, поэтому необходимо выполнение неравенства

.

Оно означает, что : скорость массивного тела всегда меньше скорости света.

2. В природе существуют безмассовые частицы (например, фотоны), несущие энергию. При подстановке в формулу ( 2) её числитель обращается в нуль. Но энергия-то фотона ненулевая!

Единственный способ избежать здесь противоречия — это принять, что безмассовая частица обязана двигаться со скоростью света. Тогда и знаменатель нашей формулы обратится в нуль, так что формула ( 2) попросту откажет. Нахождение формул для энергии безмассовых частиц не входит в компетенцию теории относительности. Так, выражение для энергии фотона устанавливается в квантовой физике.

Интуитивно чувствуется, что полная энергия ( 2) состоит из энергии покоя и собственно «энергии движения», т. е. кинетической энергии тела. При малых скоростях движения это показывается явным образом. Используем приближённые формулы, справедливые при :

( 3)
( 4)

С помощью этих формул последовательно получаем из ( 2):

( 5)

Таким образом, при малых скоростях движения полная энергия сводится просто к сумме энергия покоя и кинетической энергии. Это служит мотивировкой для определения понятия кинетической энергии в теории относительности:

. ( 6)

При формула ( 6) переходит в нерелятивистское выражение .

Теперь мы можем ответить на заданный выше вопрос о том, почему до сих пор не учитывалась энергия покоя в нерелятивистских энергетических соотношениях. Как видно из ( 5), при малых скоростях движения энергия покоя входит в полную энергию в качестве слагаемого.

В задачах, например, механики и термодинамики изменения энергии тел составляют максимум несколько миллионов джоулей; эти изменения столь незначительны по сравнению с энергиями покоя рассматриваемых тел, что приводят к микроскопическим изменениям их масс. Поэтому с высокой точностью можно считать, что суммарная масса тел не меняется в ходе механических или тепловых процессов.

В результате суммы энергий покоя тел в начале и в конце процесса попросту сокращаются в обеих частях закона сохранения энергии!

Но такое бывает не всегда. В других физических ситуациях изменения энергии тел могут приводить к более заметным изменениям суммарной массы.

Мы увидим, например, что в ядерных реакциях отличия масс исходных и конечных продуктов обычно составляют доли процента.Скажем, при распаде ядра урана суммарная масса продуктов распада примерно на меньше массы исходного ядра.

Эта одна тысячная доля массы ядра высвобождается в виде энергии, которая при взрыве атомной бомбы способна уничтожить город.

При неупругом столкновении часть кинетической энергии тел переходит в их внутренюю энергию. Релятивистский закон сохранения полной энергии учитывает этот факт: суммарная масса тел после столкновения увеличивается!

Рассмотрим в качестве примера два тела массы , летящих навстречу друг другу с одинаковой скоростью . В результате неупругого столкновения образуется тело массы , скорость которого равна нулю по закону сохранения импульса (об этом законе речь впереди). Согласно закону сохранения энергии получаем:

,

,

,

.

Мы видим, что, — масса образовавшегося тела превышает сумму масс тел до столкновения. Избыток массы, равный , возник за счёт перехода кинетической энергии сталкивающихся тел во внутреннюю энергию.

Релятивистский импульс

Классическое выражение для импульса не годится в теории относительности — оно, в частности, не согласуется с релятивистским законом сложения скоростей. Давайте убедимся в этом на следующем простом примере.

Пусть система движется относительно системы со скоростью (рис. 1). Два тела массы в системе летят навстречу друг другу с одинаковой скоростью . Происходит неупругое столкновение.

Рис. 1. К закону сохранения импульса

В системе тела после столкновения останавливаются. Давайте, как и выше, найдём массу образовавшегося тела:

,

откуда

.

Теперь посмотрим на процесс столкновения с точки зрения системы . До столкновения левое тело имеет скорость:

.

Правое тело имеет скорость:

.

Нерелятивистский импульс нашей системы до столкновения равен:

.

После столкновения получившееся тело массы двигается со скоростью .
Его нерелятивистский импульс равен:

.

Как видим, , то есть нерелятивистский импульс не сохраняется.

Оказывается, правильное выражение для импульса в теории относительности получается делением классического выражения на «релятивистский корень»: импульс тела массы , двигающегося со скоростью , равен:

. 7

Давайте вернёмся к только что рассмотренному примеру и убедимся, что теперь с законом сохранения импульса всё будет в порядке.

Импульс системы до столкновения:

.

Импульс после столкновения:

Вот теперь всё правильно: !

Связь энергии и импульса

Из формул ( 2) и ( 7) можно получить замечательное соотношение между энергией и импульсом в теории относительности. Возводим обе части этих формул в квадрат:

,

Преобразуем разность:

Это и есть искомое соотношение:

. ( 8)

Данная формула позволяет выявить простую связь между энергией и импульсом фотона. Фотон имеет нулевую массу и движется со скоростью света. Как уже было замечено выше, сами по себе энергия и импульс фотона в СТО найдены быть не могут: при подстановке в формулы ( 2) и ( 7) значений и мы получим нули в числителе и знаменателе. Но зато с помощью ( 8) легко находим: , или

( 9)

В квантовой физике устанавливается выражение для энергии фотона, после чего с помощью формулы ( 9) находится его импульс.

Релятивистское уравнение движения

Рассмотрим тело массы , движущееся вдоль оси под действием силы . Уравнение движения тела в классической механике — это второй закон Ньютона: . Если за бесконечно малое время приращение скорости тела равно , то , и уравнение движения запишется в виде:

. ( 10)

Теперь заметим, что — изменение нерелятивистского импульса тела. В результате получим «импульсную» форму записи второго закона Ньютона — производная импульса тела по времени равна силе, приложенной к телу:

. ( 11)

Все эти вещи вам знакомы, но повторить никогда не помешает 😉

Классическое уравнение движения — второй закон Ньютона — является инвариантным относительно преобразований Галилея, которые в классической механике описывают переход из одной инерциальной системы отсчёта в другую (это означает, напомним, что при указанном переходе второй закон Ньютона сохраняет свой вид).

Однако в СТО переход между инерциальными системами отсчёта описывается преобразованиями Лоренца, а относительно них второй закон Ньютона уже не является инвариантным.

Следовательно, классическое уравнение движения должно быть заменено релятивистским, которое сохраняет свой вид под действием преобразований Лоренца.

То, что второй закон Ньютона ( 10) не может быть верным в СТО, хорошо видно на следующем простом примере. Допустим, что к телу приложена постоянная сила. Тогда согласно классической механике тело будет двигаться с постоянным ускорением; скорость тела будет линейно возрастать и с течением времени превысит скорость света. Но мы знаем, что на самом
деле это невозможно.

Правильное уравнение движения в теории относительности оказывается совсем не сложным.
Релятивистское уравнение движения имеет вид ( 11), где p — релятивистский импульс:

. ( 12)

Производная релятивистского импульса по времени равна силе, приложенной к телу.

В теории относительности уравнение ( 12) приходит на смену второму закону Ньютона.

Давайте выясним, как же в действительности будет двигаться тело массы m под действием постоянной силы . При условии из формулы ( 12) получаем:

.

Остаётся выразить отсюда скорость:

. ( 13)

Посмотрим, что даёт эта формула при малых и при больших временах движения.
Пользуемся приближёнными соотношениями при :

, ( 14)

. ( 15)

Формулы ( 14) и ( 15) отличаются от формул ( 3) и ( 4) только лишь знаком в левых частях. Очень рекомендую вам запомнить все эти четыре приближённых равенства — они часто используются в физике.

Итак, начинаем с малых времён движения. Преобразуем выражение ( 13) следующим образом:

.

При малых имеем:

.

Последовательно пользуясь нашими приближёнными формулами, получим:

.

Выражение в скобках почти не отличается от единицы, поэтому при малых имеем:

.

Здесь — ускорение тела. Мы получили результат, хорошо известный нам из классической механики: скорость тела линейно растёт со временем. Это и не удивительно — при малых временах движения скорость тела также невелика, поэтому мы можем пренебречь релятивистскими эффектами и пользоваться обычной механикой Ньютона.

Теперь переходим к большим временам. Преобразуем формулу ( 13) по-другому:

.

При больших значениях имеем:

,

и тогда:

.

Хорошо видно, что при скорость тела неуклонно приближается к скорости света , но всегда остаётся меньше — как того и требует теория относительности.

Зависимость скорости тела от времени, даваемая формулой ( 13), графически представлена на рис. 2.

Рис. 2. Разгон тела под действием постоянной силы

Начальный участок графика — почти линейный; здесь пока работает классическая механика. Впоследствии сказываются релятивистские поправки, график искривляется, и при больших временах наша кривая асимптотически приближается к прямой .

Элементы релятивисткой динамики

Основной закон релятивистской динамики. Релятивистская энергия

Принцип относительности Эйнштейна утверждает инвариантность всех законов природы по отношению к переходу от одной инерциальной системе отсчета к другой. Отсюда следует, что уравнения, которые описывают законы природы, должны быть инвариантны относительно преобразований Лоренца.

Импульс. Релятивистская масса

Во время создания СТО теории, удовлетворяющей данному условию, она подразумевала уже существующую теорию электродинамики Максвелла. Уравнения вышли неинвариантными относительно преобразований Лоренца, что требовало пересмотра и уточнения законов механики.

Для этого Эйнштейн основывался на требованиях выполнимости закона сохранения импульса и закона сохранения энергии в замкнутых системах. Чтобы он выполнялся во всех инерционных системах отсчета, следовало изменить определение импульса тела.

Определение 1

Классический импульс p→=mν→ заменяют релятивистским p→ с массой m и скоростью движения ν→. Запись принимает вид:

p→=mν→1-ν2c2=mν→1-β2.

Если данное определение задействовать при решении, то закон сохранения суммарного импульса частиц выполнится во всех инерциальных системах, в которых есть связь с преобразованиями Лоренца. Когда β→0 релятивистский импульс перейдет в классический.

Определение 2

Масса m считается фундаментальной характеристикой частицы. Она не зависит от выбора инерциальной системы отсчета, скорости движения.

Некоторые учебники трактуют это как массу покоя, обозначаемую m0. Позже вводилась релятивистская масса частицы m01-β2, которая зависела от скорости движения частицы. Современная физика отказывается от данных терминологий.

Определение 3

Запись основного закона релятивистской динамики материальной точки принимает вид, аналогичный второму закону Ньютона:

F→=dp→dt,

тогда p→ примет значение релятивистского импульса частицы. Отсюда следует

F→=ddtmv→1-ν2c2.

Скорость частицы в релятивистской механике не пропорциональна релятивистскому импульсу, то есть скорость изменения не будет пропорциональна ускорению. Отсюда имеем, что сила постоянна по модулю и по направлению, причем не вызывает равноускоренного движения. Если существует одномерное движение вдоль Ох, тогда ускорение частицы a=dνdt с постоянной F равняется a=Fm1-ν2c232.

Движение релятивистской частицы

Определение 4

При росте скорости классической частицы под действием постоянной силы, скорость релятивистской частицы не превышает скорость света с в пустоте.

Это очевидно, так как выполняется закон сохранения энергии релятивистской частицы. Определение Ek производится через работу внешней силы, которая необходима для сообщения телу заданной скорости. При разгоне частицы с массой m из состояния покоя до скорости ν0 действует постоянная сила, совершающая работу

A=∫F·dx=∫F·ν·dt=∫m·α·ν·dt1-ν2c232.

Так как α dt=dν, то запись примет вид Ek=A=∫0v0m·ν·dν1-ν2c232.

При вычислении интеграла произойдет упрощение выражения:

Ek=mc21-ν2c2-mc2.

Интерпретация Эйнштейном первого члена правой части звучит как полная энергия Е движущейся частицы, а второго – энергией покоя E0:

E=mc21-ν2c2,E0=mc2.

Определение 5

Кинетической энергией Ek считают разность между полной Е и энергией покоя E0. Запись принимает вид:

Ek=E-E0.

На рисунке 4.5.1 изображено изменение Ek частицы, подчиняющейся классическому и релятивистскому законам.

Рисунок 4.5.1. Зависимость кинетической энергии от скорости для релятивистской (a) и классической (b) частиц. При υ≪c оба закона совпадают.

Вывод релятивистской механики в том, что масса m, находящаяся в покое, содержит большое количество энергии. Это применяется при ядерной энергии. Если наблюдалось уменьшение массы частицы на ∆m, тогда выделившаяся энергия примет вид ∆E=∆m·c2.

Проводимые эксперименты дают понять, что существование энергии покоя реальное. Первый, кто подтвердил это, был Эйнштейн. Он использовал отношение, связывающее массу и энергию, полученное при их сравнении.

При бета-распаде свободного нейтрона появлялись протон, электрон и антинейтрино с нулевой массой:

n→p+e-+ν~.

Конечные продукты обладали суммарной кинетической энергией, равной 1,25·10-13 Дж.

Определение 6

Масса нейтрона значительно превышает суммарную массу протона и электрона на ∆m=13,9·10-31 кг. Так как прослеживается уменьшение массы, необходимо использовать соответствующую энергию ∆E=∆m·c2=1,25·10-13 Дж. Она равняется кинетической энергии релятивистской частицы.

Пример 1

Если взрывается 1 т тринитротолуола, то происходит освобождение энергии 4,2·109 Дж, при взрыве мегатонной бомбы – 4,2·1015 Дж. Из формулы m=Ec2 выходит, что искомая масса – это 46 г. При взрыве ядерной бомбы m уменьшается на 50 г. То есть масса водородной бомбы при 1 мегатонне тринитротолуола имеет около 50 кг.

Связь между энергией и импульсом релятивистской частицы

Самым важным выводом СТО является закон пропорциональности массы и энергии. Они обладают различными свойствами материи.

Масса тела говорит о его инертности или способности вступать в гравитационное взаимодействие с другими телами.

Важное свойство энергии – это способность превращения из одной формы в другую во время различных физических процессов, что подтверждает закон сохранения энергии.

Определение 7

Масса и энергия пропорциональны и выражают внутреннюю сущность материи.

Получаем, что формула Эйнштейна E0=mc2 выражает фундаментальный закон природы, называемый законом взаимосвязи массы и энергии.

Если скомбинировать выражения p→=mν→1-ν2c2=mν→1-β2 и E=mc21-ν2c2, то придем к связывающему их соотношению.

Для этого следует переписать эти формулы в упрощенном виде

p2mc2=ν2c21-ν2c2,

Emc22=11-ν2c2.

После почленного вычитания получаем E2=mc22+pc2.

Следовательно, что для покоящихся частиц энергия фиксируется как E=E0=mc2.

Определение 8

Исходя из соотношения становится понятно, что частица может обладать энергией и импульсом, но не иметь массы, то есть m=0. Она получила название безмассовой. Для нее используется формула связи энергии и импульса в виде E=pc.

Определение 9

К частицам, которые не имеют массы, относят фотоны, называемые квантами электромагнитного излучения, и нейтрино. Существование безмассовых частиц в покое невозможно, поэтому их движение характеризуется предельной скоростью с.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

2.4.2. Релятивистский импульс

Первый постулат СТО декларирует инвариантность всех физических законов относительно ИСО.

Это означает в частности, что их математические формулировки должны иметь одинаковый вид и не допускать исключений при описании физических явлений.

В первую очередь это требование должно выполняться для таких законов, как законы сохранения энергии, импульса и пр. Имея это в виду, рассмотрим понятие импульса в СТО.

В классической механике импульс тела определяется как произведение массы тела на его скорость: р = mv, где масса тела m полагается постоянной величиной, независящей ни от времени, ни от положения тела, ни от ИСО, в которой описывается движение этого тела.

Однако применение классического определения импульса приводит в СТО к нарушению закона сохранения импульса.

В этом можно убедиться на простом примере неупругого столкновения двух частиц, движущихся с одинаковыми импульсами

95

навстречу друг другу в плоскости X,У.

В неподвижной ИСО S в результате такого столкновения образуется неподвижная частица с совокупной массой Ш] + т2 (см. рис. 2.12).

Это означает, что и продольная компонента импульса рх совокупной частицы и ее поперечная компонента ру в системе S равны 0.

Рассмотрим теперь результат столкновения в системе S' для поперечной составляющей импульса, используя при этом релятивистский закон сложения скоростей.

Предсказываемое классическим рассмотрением нулевое значение поперечного импульса ру (в соответствии с законом со-

Рис. 2.12

хранения импульса) не подтверждается. Это видно из результата вычисления алгебраической суммы поперечных импульсов частиц при подстановке в них значений поперечных скоростей в системе S' по релятивистской формуле (2.14):

В формуле (2.21) числители слагаемых дробей равны, так как mjvly = m2v2y по условию рассматриваемой задачи, но знаменатели явно не равны.

Отличие от нуля поперечного импульса в системе S' противоречит классическому закону сохранения импульса и вынуждает пересмотреть определение импульса в СТО для устранения столь парадоксального нарушения одного из фундаментальных законов физики.

Релятивистский импульс в СТО, исключающий нарушения закона сохранения импульса, вводится благодаря пересмотру свойств массы т. По форме написание выражения для импульса сохраняется

но коэффициент m в формуле (2.22) теряет свойство быть постоянной и ни от чего не зависящей характеристикой физических объектов и становится зависимым от скорости тела:

где m называется теперь релятивистской массой тела, ш0 — его массой покоя, a v — скорость тела в условно неподвижной системе отсчета S. Следовательно, модуль релятивистского импульса будет иметь вид:

Таким образом, из формулы (2.23) следует, что масса в СТО для наблюдателей, находящихся в разных ИСО, имеет разную величину, а при скорости, стремящейся к скорости света, она становится бесконечно большой. Однако масса покоя тела Шо является инвариантной для всех ИСО.

Возможное объяснение столь необычных свойств релятивистской массы кроется в уже описанных ранее релятивистских свойствах времени.

Поскольку в формуле (2.

22) содержится скорость тела v, которая по определению равна производной по времени от пройденного телом расстояния s: v = ds/dt в выбранной для описания его движения ИСО, возникает вопрос — по какому времени следует вычислять эту производную — времени t в ИСО (относительному, зависящему от выбора ИСО), или собственному времени тела tG (времени ИСО, в которой тело покоится), определяемому по формуле (2.10).

Поскольку собственное время движущегося тела является инвариантным для всех ИСО, предпочтение следует отдать ему. Тогда

в результате релятивистский коэффициент появляется в

знаменателе формулы (2.24).

Если этот коэффициент отнести теперь не к скорости, а к инвариантной массе покоя, то в результате появляется релятивистская масса формулы (2.23), зависящая от скорости тела.

Релятивистский импульс и релятивистская масса в СТО являются аддитивными физическими величинами, как и в классической механике, но при этом масса покоя т0 теряет это свойство (ниже это будет показано и объяснено).

С введением релятивистской массы становится понятным и объяснимым результат описанного выше опыта Бертоцци и всех других экспериментов с ускорением элементарных частиц в современных ускорителях.

Невозможность разогнать их до скорости света вытекает из элементарного анализа формулы (2.23) — при значении скорости частицы v, приближающемуся к скорости света в вакууме, ее релятивистская масса (а это — мера ее инертности) стремится к бесконечно большим значениям. Но бесконечно большими значениями физические величины не могут обладать ни при каких обстоятельствах.

Есть все основания в первую очередь рассмотреть вопрос о статусе кинетической энергии в СТО, так как именно эта энергия связана с движением тел, а движение является наиболее важным свойством материального мира

В качестве отправной точки для анализа этой физической величины возьмем простую формулу (1.36а) классической механики, связывающую приращение кинетической энергии с приращением импульса частицы: dT = vdp.

В правой части этой формулы содержатся физические величины, уже исследованные нами в рамках СТО — скорость частицы v и ее импульс р. Поэтому перепишем эту формулу еще раз в виде dT = vd(mv), и, используя полученные ранее результаты, преобразуем с учетом зависимости релятивистской массы от скорости частицы:

Для дальнейших вычислений выведем вспомогательную формулу, которую получим после дифференцирования формулы (2.

23), предварительно проделав с ней простые алгебраические преобразования (последовательность преобразований: перенести релятивистский квадратный корень в левую часть равенства, возвести полученное равенство в квадрат и затем привести к общему знаменателю, умножив равенство на с“), получим:

Поскольку Шо для всех ИСО одинакова, правая часть равенства (2.27) является константой, поэтому после его дифференцирования получим:

и сократив на 2т последнее равенство, получим из него:

Теперь нетрудно видеть, что из равенств (2.26) и (2.28) следует простая формула:

Формула (2.29) связывает приращение кинетической энергии с приращением релятивистской массы частицы, которая, в свою очередь, зависит только от скорости частицы.

Чтобы лучше разобраться в результатах нового, релятивистского подхода к понятию кинетической энергии, проинтегрируем выражение (2.29).

Релятивистская масса может только возрастать от своего минимального значения т0 до текущего значения т, поэтому интеграл вычислим именно в этих пределах:

В правой части полученного равенства содержится два слагаемых. В СТО первое слагаемое обозначается Е и называется полной релятивистской энергией частицы:

Второе слагаемое обозначается Е0 и называется собственной энергией или энергией покоя частицы:

Таким образом, кинетическая энергия движущейся частицы в СТО равна разности ее полной и собственной релятивистских энергий:

Появление в физике 20-го века понятия собственной энергии, выражаемой формулой (2.32), было революционным и нуждалось в экспериментальном подтверждении, которое появилось лишь спустя несколько десятилетий с развитием физики атома.

Формулы (2.30) и (2.33) по виду и физическому содержанию существенно отличаются от формулы (1.36) для кинетической энергии в классической физике.

Покажем, однако, что классическую формулу кинетической энергии (1.23) можно получить предельным переходом, как частный случай формулы (2.30), как этого требует принцип соответствия.

С этой целью придадим формуле (2.30) вид:

Выражение в круглых скобках разложим в биномиальный

2 2

ряд по степеням аргумента v /с .

Поскольку в нерелятивистской области v « с, пренебрегая членами ряда высоких порядков малости, получим:

Это означает, что в области скоростей v « с значения кинетической энергии частицы, рассчитанное по формулам (2.30), и (1.23), практически совпадают.
Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.